Volcanoes

‘So, What ELSE Happened Today???’ The Weekly Volcanic Activity Report: September 8 – 14, 2020. 15 (5+5+5) Active Volcanoes.

Foreshadow Now, ‘Season of the End Times’:

Blog note. Jesus indicated that ‘fearful sights’ (various natural disasters) would occur leading up to the time known as the Tribulation and Great Tribulation (a combined seven year period of great destruction on earth). Although these types of things have occurred in the past for centuries and thousands of years, they could be identified as the ‘season of the times’ due to the ferociousness of these events. They would be occurring in greater intensity, severity, frequency, size, duration, scope … just like the pains that a woman experiences in labor the farther along she is in the labor process. We are in the ‘season of the times’ that comes just before the seven (7) year Tribulation/Great Tribulation period

… And great earthquakes shall be in diverse places, and famines, and pestilences; and fearful sights and great signs shall there be from heaven. (Luke 21:11).


… And there shall be signs in the sun, and in the moon, and in the stars; and upon the earth distress of nations, with perplexity; the sea and the waves roaring; (Luke 21:25)


… Men’s hearts failing them for fear, and for looking after those things which are coming on the earth: for the powers of heaven shall be shaken; (Luke 21:26)


… This know also, that in the last days perilous times shall come. (2 Timothy 3:1)

Jesus is giving a series of prophecies about what to look for as the age of grace comes to a close. These verses are several of many such prophecies from throughout the Bible. 2017 was the worst year in recorded history for the intensity, frequency, severity, duration and occurrence of a large number of severe natural disasters worldwide. Earthquakes, volcanoes, hurricanes, typhoons, cyclones, torrential flooding, unprecedented wildfires in unusual places, devastating droughts, excessive/scorching heat setting records everywhere, record snowfalls in Europe and Russia. Snow in the Arabia. This list can go on. Most studied Eschatologists believe these ‘fearful sights’ and massive natural disasters are all part of the ‘CONVERGENCE’ of signs that this Biblical and prophetic age is closing. Most people who study prophecy are familiar with the routine reference(s) made that these things will be like a woman having labor.

Future, during the seven (7) year tribulation;

Revelation 6:7-8 And when he had opened the fourth seal, I heard the voice of the fourth beast say, Come and see. 8 And I looked, and behold a pale horse: and his name that sat on him was Death, and Hell followed with him. And power was given unto them over the fourth part of the earth, to kill with sword, and with hunger, and with death, and with the beasts of the earth.

(‘fourth part’ = 25% = *7.7 billion x .25 = 1.93 billion people) *estimated earth population as of March 2020.

‘So, What ELSE Happened Today???’ The Weekly Volcanic Activity Report: September 8 – 14, 2020. 15 (5+5+5) Active Volcanoes.

Posted by Teo Blašković on September 16, 2020 Watchers.news

New activity/unrest was reported for 1 volcano from September 8 to 14, 2020. During the same period, ongoing activity was reported for 14 volcanoes.

New activity/unrest: Sinabung, Indonesia.

Ongoing activity: Aira, Kyushu (Japan) | Bezymianny, Central Kamchatka (Russia) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Fuego, Guatemala | Kadovar, Papua New Guinea | Kikai, Japan | Manam, Papua New Guinea | Pacaya, Guatemala | Reventador, Ecuador | Semeru, Eastern Java (Indonesia) | Sheveluch, Central Kamchatka (Russia) | Suwanosejima, Ryukyu Islands (Japan) | Whakaari/White Island, North Island (New Zealand).

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian’s Global Volcanism Program and the US Geological Survey’s Volcano Hazards Program. Updated by 23:00 UTC every Wednesday, these reports are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth’s volcanoes erupting during the week, but rather a summary of activity at volcanoes that meet criteria discussed in detail in the “Criteria and Disclaimers” section. Carefully reviewed, detailed reports about recent activity are published in issues of the Bulletin of the Global Volcanism Network.

New activity/unrest

Sinabung, Indonesia

3.17°N, 98.392°E, Summit elev. 2460 m

PVMBG reported that white plumes rose as high as 500 m above Sinabung’s summit and drifted in multiple directions during 9-15 September. The Alert Level remained at 3 (on a scale of 1-4), with a general exclusion zone of 3 km and extensions to 5 km on the SE sector and 4 km in the NE sector.

Geological summary: Gunung Sinabung is a Pleistocene-to-Holocene stratovolcano with many lava flows on its flanks. The migration of summit vents along a N-S line gives the summit crater complex an elongated form. The youngest crater of this conical andesitic-to-dacitic edifice is at the southern end of the four overlapping summit craters. The youngest deposit is a SE-flank pyroclastic flow 14C dated by Hendrasto et al. (2012) at 740-880 CE. An unconfirmed eruption was noted in 1881, and solfataric activity was seen at the summit and upper flanks in 1912. No confirmed historical eruptions were recorded prior to explosive eruptions during August-September 2010 that produced ash plumes to 5 km above the summit.

Ongoing activity

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Summit elev. 1117 m

JMA reported that very small eruptive events at Minamidake Crater (at Aira Caldera’s Sakurajima volcano) were occasionally recorded during 7-14 September. Nighttime crater incandescence was noted during 9-10 and 12-13 September. The daily sulfur dioxide emission rate was elevated at 1,300 tons/day on 11 September. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan’s most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu’s largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Bezymianny, Central Kamchatka (Russia)

55.972°N, 160.595°E, Summit elev. 2882 m

KVERT reported that a new lava dome began growing in the summit crater of Bezymianny around 26 August. A thermal anomaly over the summit was visible during 28-31 August and on 4, 8, and 10 September. Weather clouds sometimes obscured views of the volcano. The Aviation Color Code remained at Yellow (the second lowest level on a four-color scale).

Geological summary: Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Summit elev. 1229 m

Based on satellite and wind model data, and information from PVMBG, the Darwin VAAC reported that during 9-14 September ash plumes from Dukono rose 2.1 km (7,000 ft) a.s.l. and drifted in multiple directions. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to remain outside of the 2-km exclusion zone.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia’s most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Summit elev. 1103 m

Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 4-5 and 10 September that sent ash plumes up to 3.5 km (11,500 ft) a.s.l. and drifted SE and E. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Fuego, Guatemala

14.473°N, 90.88°W, Summit elev. 3763 m

INSIVUMEH reported that there were 6-12 explosions per hour at Fuego recorded during 26 August-1 September, generating ash plumes as high as 1.1 km above the crater rim that generally drifted 10-20 km in multiple directions. Shock waves rattled buildings within a 20-km radius. Incandescent material ejected 100-300 m high caused avalanches of blocks in the Ceniza (SSW), Seca (W), Trinidad (S), Taniluyá (SW), Las Lajas, and Honda drainages; avalanches sometimes reached vegetated areas. Ashfall was reported daily in several areas downwind including Morelia (9 km SW), Panimaché I and II (8 km SW), Finca Palo Verde, Santa Sofía (12 km SW), San Pedro Yepocapa (8 km NW), and Sangre de Cristo (8 km WSW).

During 10-11 September a lava flow traveled 200 m down the Ceniza and lengthened to 700 m by 12 September; the front of the lava flow generated block avalanches. Strong Vulcanian explosions generated ash plumes that rose over 1.1 km above the crater rim during 11-12 September. Shorter portions of the lava flow were active through 14 September, and by 15 September the flow was 100 m long.

Geological summary: Volcán Fuego, one of Central America’s most active volcanoes, is also one of three large stratovolcanoes overlooking Guatemala’s former capital, Antigua. The scarp of an older edifice, Meseta, lies between Fuego and Acatenango to the north. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at the mostly andesitic Acatenango. Eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Kadovar, Papua New Guinea

3.608°S, 144.588°E, Summit elev. 365 m

Based on satellite data, the Darwin VAAC reported that on 12 September an ash plume from Kadovar rose to an altitude of 1.8 km (6,000 ft) a.s.l. and drifted W.

Geological summary: The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. It is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. Prior to an eruption that began in 2018, a lava dome formed the high point of the andesitic volcano, filling an arcuate landslide scarp open to the south; submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. A period of heightened thermal phenomena took place in 1976. An eruption began in January 2018 that included lava effusion from vents at the summit and at the E coast.

Kikai, Japan

30.793°N, 130.305°E, Summit elev. 704 m

JMA reported that during 7-14 September white plumes from Satsuma Iwo-jima, a subaerial part of Kikai’s NW caldera rim, rose as high as 1 km above the Iodake crater rim. Incandescence from the crater was visible at night. The Alert Level remained at 2 (on a 5-level scale).

Geological summary: Kikai is a mostly submerged, 19-km-wide caldera near the northern end of the Ryukyu Islands south of Kyushu. It was the source of one of the world’s largest Holocene eruptions about 6,300 years ago when rhyolitic pyroclastic flows traveled across the sea for a total distance of 100 km to southern Kyushu, and ashfall reached the northern Japanese island of Hokkaido. The eruption devastated southern and central Kyushu, which remained uninhabited for several centuries. Post-caldera eruptions formed Iodake lava dome and Inamuradake scoria cone, as well as submarine lava domes. Historical eruptions have occurred at or near Satsuma-Iojima (also known as Tokara-Iojima), a small 3 x 6 km island forming part of the NW caldera rim. Showa-Iojima lava dome (also known as Iojima-Shinto), a small island 2 km E of Tokara-Iojima, was formed during submarine eruptions in 1934 and 1935. Mild-to-moderate explosive eruptions have occurred during the past few decades from Iodake, a rhyolitic lava dome at the eastern end of Tokara-Iojima.

Manam, Papua New Guinea

4.08°S, 145.037°E, Summit elev. 1807 m

The Darwin VAAC reported that on 11 September ash plumes from Manam rose 2.4 km (8,000 ft) a.s.l. and drifted W, based on satellite data and weather models.

Geological summary: The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country’s most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These “avalanche valleys” channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island’s shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Pacaya, Guatemala

14.382°N, 90.601°W, Summit elev. 2569 m

On 13 September INSIVUMEH reported that during the previous week activity at Pacaya’s Mackenney Crater was characterized by lava-flow effusion and Strombolian explosions that ejected material as high as 200 m above the vent. Ejected material landed within 50 m of the cone. An active lava flow that had traveled NE was 1,250 m long; another on the N flank was as long as 300 m. Explosive activity rattled houses within a 4-km radius. Lava flows continued to be active during 13-15 September; reaching 600 m long on the NE flank, 300 m long on the N flank, and 400-425 m long (and most active) on the S flank. Strombolian explosions continued to ejected material as high as 200 m.

Geological summary: Eruptions from Pacaya, one of Guatemala’s most active volcanoes, are frequently visible from Guatemala City, the nation’s capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Reventador, Ecuador

0.077°S, 77.656°W, Summit elev. 3562 m

IG reported that a high level of activity continued to be recorded at Reventador. In a special report, IG reviewed the activity had started in mid-June, characterized by strong explosions, the ejection of blocks that rolled down the flanks, and pyroclastic flows that descended the N, NE, and W flanks less than 1 km. Additionally, at the beginning of August, a small lava flow effused at the summit and traveled 400-500 m down the NE flank. Formation of a summit lava dome was also noted on 17 August. The number of thermal alerts was the highest in August compared to the rest of the year. The cone destroyed during a 2002 eruption had been rebuilt and was as tall or slightly taller by 11 September.

During 9-15 September gas, steam, and ash emissions observed with the webcam or reported by the Washington VAAC, sometimes multiple times a day, rose as high as 1 km above the summit crater and drifted N, NW, and W. Incandescent blocks rolled down the N flank during 9-10 September and as far as 600 m down the S and SW flanks during 13-15 September. The lava flow on the NE flank had not lengthened.

Geological summary: Reventador is the most frequently active of a chain of Ecuadorian volcanoes in the Cordillera Real, well east of the principal volcanic axis. The forested, dominantly andesitic Volcán El Reventador stratovolcano rises to 3562 m above the jungles of the western Amazon basin. A 4-km-wide caldera widely breached to the east was formed by edifice collapse and is partially filled by a young, unvegetated stratovolcano that rises about 1300 m above the caldera floor to a height comparable to the caldera rim. It has been the source of numerous lava flows as well as explosive eruptions that were visible from Quito in historical time. Frequent lahars in this region of heavy rainfall have constructed a debris plain on the eastern floor of the caldera. The largest historical eruption took place in 2002, producing a 17-km-high eruption column, pyroclastic flows that traveled up to 8 km, and lava flows from summit and flank vents.

Semeru, Eastern Java (Indonesia)

8.108°S, 112.922°E, Summit elev. 3657 m

According to PVMBG ground-based observers noted ash plumes from Semeru rising 400 m above the summit and drifting S on 14 September. An ash plume rose 500 m and drifted NE the next day. The Alert Level remained at 2 (on a scale of 1-4).

Geological summary: Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Summit elev. 3283 m

KVERT reported that a thermal anomaly over Sheveluch was identified in satellite images during 4-5 and 8-10 September; weather clouds prevented views during 6-7 and 11 September. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka’s largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Suwanosejima, Ryukyu Islands (Japan)

29.638°N, 129.714°E, Summit elev. 796 m

JMA reported periodic nighttime incandescence and three explosions at Suwanosejima’s Ontake Crater during 4-11 September. The Alert Level remained at 2 (on a 5-level scale).

Geological summary: The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan’s most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Whakaari/White Island, North Island (New Zealand)

37.52°S, 177.18°E, Summit elev. 294 m

On 15 September GeoNet reported continuing but low levels of activity at Whakaari/White Island. Over the previous six weeks the team conducted three flights to measure gas emissions and one for visual observations. The data show that shallow magma was degassing at a high rate through an open, unobstructed system. Temperatures at the gas vents remained high (around 440 degrees Celsius), though that is 100 degrees less than when measured in July. Some of the gas vents had become larger and water had ponded on the crater floor. Continuing subsidence of the active vent areas and the S and W parts of Main Crater wall was indicated by deformation measurements. Volcanic tremor had been generally low, except for a short period in early August. The Volcanic Alert Level was lowered to 1 and the Aviation Color Code remained at Yellow.

Geological summary: The uninhabited Whakaari/White Island is the 2 x 2.4 km emergent summit of a 16 x 18 km submarine volcano in the Bay of Plenty about 50 km offshore of North Island. The island consists of two overlapping andesitic-to-dacitic stratovolcanoes. The SE side of the crater is open at sea level, with the recent activity centered about 1 km from the shore close to the rear crater wall. Volckner Rocks, sea stacks that are remnants of a lava dome, lie 5 km NW. Descriptions of volcanism since 1826 have included intermittent moderate phreatic, phreatomagmatic, and Strombolian eruptions; activity there also forms a prominent part of Maori legends. The formation of many new vents during the 19th and 20th centuries caused rapid changes in crater floor topography. Collapse of the crater wall in 1914 produced a debris avalanche that buried buildings and workers at a sulfur-mining project. Explosive activity in December 2019 took place while tourists were present, resulting in many fatalities. The official government name Whakaari/White Island is a combination of the full Maori name of Te Puia o Whakaari (“The Dramatic Volcano”) and White Island (referencing the constant steam plume) given by Captain James Cook in 1769

In His Service,

Night Watchman

Paul Rolland

Night Watchman Ministries

Make Your Decision for Christ NOW!!!!!!! Time is Up!!!!!!!

Jesus Christ’s Offer of Salvation:

The ABCs of Salvation through Jesus Christ (the Lamb)

A. Admit/Acknowledge/Accept that you are sinner. Ask God’s forgiveness and repent of your sins.

. . . “For all have sinned, and come short of the glory of God.” (Romans 3:23).

. . . “As it is written, There is none righteous, no, not one.” (Romans 3:10).

. . . “If we say that we have no sin, we deceive ourselves, and the truth is not in us.” (1 John 1:8).

B. Believe Jesus is Lord. Believe that Jesus Christ is who He claimed to be; that He was both fully God and fully man and that we are saved through His death, burial, and resurrection. Put your trust in Him as your only hope of salvation. Become a son or daughter of God by receiving Christ.

. . . “That whosoever believeth in him should not perish, but have eternal life. For God so loved the world, that he gave his only begotten Son, that whosoever believeth in him should not perish, but have everlasting life. For God sent not his son into the world to condemn the world; but that the world through him might be saved. (John 3:15-17). For whosoever shall call upon the name of the Lord shall be saved.” (Romans 10:13).

C. Call upon His name, Confess with your heart and with your lips that Jesus is your Lord and Savior.

. . . “That if thou shalt confess with thy mouth the Lord Jesus, and shalt believe in thine heart that God hath raised him from the dead, thou shalt be saved. For with the heart man believeth unto righteousness; and with the mouth confession is made unto salvation.” (Romans 10:9-10).

. . . “If we say that we have no sin, we deceive ourselves, and the truth is not in us. If we confess our sins, he is faithful and just to forgive us our sins, and to cleanse us from all unrighteousness. If we say that we have not sinned, we make him a liar, and his word is not in us.” (John 1:8-10).

. . . “And he is the propitiation for our sins: and not for ours only, but also for the sins of the whole world. (John 2:2).

. . . “In this was manifested the love of god toward us, because that God sent his only begotten Son into the world, that we might live through him. And we have seen and do testify that the Father sent the Son to be the Saviour of the world. Whosoever shall confess that Jesus is the Son of God, God dwelleth in him, and he in God.” (1 John 4:9, 14-15).

. . . “But God commendeth his love toward us, in that, while we were yet sinners, Christ died for us. Much more then, being now justified by his blood, we shall be saved from wrath through him. For if, when we were enemies, we were reconciled to God by the death of his Son, much more, being reconciled, we shall be saved by his life.” (Romans 5:8-10).

. . . “For the wages of sin is death; but the gift of God is eternal life through Jesus Christ our Lord.” (Romans 6:23).

. . . “Jesus saith unto them, I am the way, the truth, and the life, no man cometh unto the Father, but by me.” (John 14:6).

. . . “For I am not ashamed of the gospel of Christ: for it is the power of God unto salvation to everyone that believeth.” (Romans 1:16).

. . . “Neither is there salvation in any other: for there is none other name under heaven given among men, whereby we must be saved.” (Acts: 4:12).

. . . “Who will have all men to be saved, and to come unto the knowledge of the truth for there is one God, and one mediator between God and men, the man Christ Jesus.” (1 Timothy 2:4-6).

. . . “For God did not appoint us to suffer wrath but to receive salvation through our Lord Jesus Christ.” (1 Thessalonians 5:9).

. . . “But as many as received him, to them gave the power to become the sons of God, even to them that believe on his name.” (John 1:12).

True Church / Bride of Christ Spared from God’s Wrath:

 Romans 5:8-10. “But God commendeth his love toward us, in that, while we were yet sinners, Christ died for us. Much more then, being now justified by his blood, we shall be saved from wrath through him. For if, when we were enemies, we were reconciled to God by the death of his Son, much more, being reconciled, we shall be saved by his life.”

Romans 12:19Dearly beloved, avenge not yourselves, but rather give place unto wrath: for it is written, Vengeance is mine; I will repay, saith the Lord.

1 Thessalonians 1:10. And to wait for his Son from heaven, whom he raised from the dead, even Jesus, which delivered us from the wrath to come.

1 Thessalonians 5:9. For God hath not appointed us to wrath, but to obtain salvation by our Lord Jesus Christ,

Romans 8:35. Who shall separate us from the love of Christ? shall tribulation, or distress, or persecution, or famine, or nakedness, or peril, or sword?

Jeremiah 30:7. Alas! for that day is great, so that none is like it: it is even the time of Jacob’s trouble, but he shall be saved out of it.

Revelation 3:10 Because thou hast kept the word of my patience, I also will keep thee from the hour of temptation, which shall come upon all the world, to try them that dwell upon the earth.

Categories: Volcanoes

Leave a Reply