Volcanoes

The Weekly Volcanic Activity Report: March 20 – 26, 2019

Blog note. Jesus indicated that ‘fearful sights’ (various natural disasters) would occur leading up to the time known as the Tribulation and Great Tribulation (a combined seven year period of great destruction on earth). Although these types of things have occurred in the past for centuries and thousands of years, they could be identified as the ‘season of the times’ due to the ferociousness of these events. They would be occurring in greater intensity, severity, frequency, size, duration, scope … just like the pains that a woman experiences in labor the farther along she is in the labor process. We are in the ‘season of the times’ that comes just before the seven (7) year Tribulation/Great Tribulation period
… And great earthquakes shall be in diverse places, and famines, and pestilences; and fearful sights and great signs shall there be from heaven. (Luke 21:11).
… And there shall be signs in the sun, and in the moon, and in the stars; and upon the earth distress of nations, with perplexity; the sea and the waves roaring; (Luke 21:25)
… Men’s hearts failing them for fear, and for looking after those things which are coming on the earth: for the powers of heaven shall be shaken; (Luke 21:26)
… This know also, that in the last days perilous times shall come. (2 Timothy 3:1)
Jesus is giving a series of prophecies about what to look for as the age of grace comes to a close. These verses are several of many such prophecies from throughout the Bible. 2017 was the worst year in recorded history for the intensity, frequency, severity, duration and occurrence of a large number of severe natural disasters worldwide. Earthquakes, volcanoes, hurricanes, typhoons, cyclones, torrential flooding, unprecedented wildfires in unusual places, devastating droughts, excessive/scorching heat setting records everywhere, record snowfalls in Europe and Russia. Snow in the Arabia. This list can go on. Most studied Eschatologists believe these ‘fearful sights’ and massive natural disasters are all part of the ‘CONVERGENCE’ of signs that this Biblical and prophetic age is closing. Most people who study prophecy are familiar with the routine reference(s) made that these things will be like a woman having labor pains that occur in greater severity, frequency, size and duration prior to giving birth. End of note.

The Weekly Volcanic Activity Report: March 20 – 26, 2019

Posted by TW on March 28, 2019. Watchers.news

New activity/unrest was reported for 3 volcanoes from March 20 – 26, 2019. During the same period, ongoing activity was reported for 15 volcanoes.

New activity/unrest: Bezymianny, Central Kamchatka (Russia) | Tengger Caldera, Eastern Java (Indonesia) | Villarrica, Chile.

Ongoing activity: Agung, Bali (Indonesia) | Aira, Kyushu (Japan) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Fuego, Guatemala | Ibu, Halmahera (Indonesia) | Karymsky, Eastern Kamchatka (Russia) | Kilauea, Hawaiian Islands (USA) | Krakatau, Indonesia | Manam, Papua New Guinea | Merapi, Central Java (Indonesia) | Rincon de la Vieja, Costa Rica | Sheveluch, Central Kamchatka (Russia) | Suwanosejima, Ryukyu Islands (Japan) | Turrialba, Costa Rica.

New activity/unrest

Bezymianny, Central Kamchatka (Russia)

55.972°N, 160.595°E, Elevation 2882 m

KVERT reported that after a powerful explosive eruption at Bezymianny recorded on 15 March activity was characterized by growth of the W part of the lava dome, strong fumarolic activity, and dome incandescence. The Aviation Color Code was lowered to Yellow (the second lowest level on a four-color scale) on 21 March.

Geological summary: Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater. This volcano is located within the Volcanoes of Kamchatka, a UNESCO World Heritage property.

Tengger Caldera, Eastern Java (Indonesia)

7.942°S, 112.95°E, Elevation 2329 m

PVMBG reported that during 19-26 March ash plumes of variable densities and colors ranging from white to black rose as high as 1.2 km above the crater rim of Tengger Caldera’s Bromo cone. The ash plumes drifted in multiple directions. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to stay outside of a 1-km radius of the crater.

Geological summary: The 16-km-wide Tengger caldera is located at the northern end of a volcanic massif extending from Semeru volcano. The massive volcanic complex dates back to about 820,000 years ago and consists of five overlapping stratovolcanoes, each truncated by a caldera. Lava domes, pyroclastic cones, and a maar occupy the flanks of the massif. The Ngadisari caldera at the NE end of the complex formed about 150,000 years ago and is now drained through the Sapikerep valley. The most recent of the calderas is the 9 x 10 km wide Sandsea caldera at the SW end of the complex, which formed incrementally during the late Pleistocene and early Holocene. An overlapping cluster of post-caldera cones was constructed on the floor of the Sandsea caldera within the past several thousand years. The youngest of these is Bromo, one of Java’s most active and most frequently visited volcanoes. This volcano is located within the Bromo Tengger Semeru-Arjuno, a UNESCO Biosphere Reserve property.

Villarrica, Chile

39.42°S, 71.93°W, Elevation 2847 m

On 20 March POVI reported that lava fountains at Villarrica were visible rising almost 50 m above the crater rim. They noted that, despite low seismicity, Strombolian explosions on 24 March ejected material more than 25 m above the crater rim.

Geological summary: Glacier-clad Villarrica, one of Chile’s most active volcanoes, rises above the lake and town of the same name. It is the westernmost of three large stratovolcanoes that trend perpendicular to the Andean chain. A 6-km-wide caldera formed during the late Pleistocene. A 2-km-wide caldera that formed about 3500 years ago is located at the base of the presently active, dominantly basaltic to basaltic-andesitic cone at the NW margin of the Pleistocene caldera. More than 30 scoria cones and fissure vents dot the flanks. Plinian eruptions and pyroclastic flows that have extended up to 20 km from the volcano were produced during the Holocene. Lava flows up to 18 km long have issued from summit and flank vents. Historical eruptions, documented since 1558, have consisted largely of mild-to-moderate explosive activity with occasional lava effusion. Glaciers cover 40 km2 of the volcano, and lahars have damaged towns on its flanks.

Ongoing activity

Agung, Bali (Indonesia)

8.343°S, 115.508°E, Elevation 2997 m

PVMBG reported that at 0018 on 21 March an event at Agung was recorded for 1 minute and 47 seconds by the seismic network. Weather conditions prevented visual observations of the summit. The Alert Level remained at 3 (on a scale of 1-4) with the exclusion zone set at a 4-km radius.

Geological summary: Symmetrical Agung stratovolcano, Bali’s highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means “Paramount,” rises above the SE caldera rim of neighboring Batur volcano, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Elevation 1117 m

JMA reported that during 18-22 March there were two events and one explosion recorded at Minamidake crater (at Aira Caldera’s Sakurajima volcano). Plumes rose at least as high as 1.7 km above the crater rim. Small events occasionally occurred during 22-25 March; crater incandescence was visible at night on 24 March. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan’s most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu’s largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Elevation 1229 m

Based on satellite and wind model data, the Darwin VAAC reported that during 20-22 and 24 March ash plumes from Dukono rose to altitudes of 2.1-2.4 km (7,000-8,000 ft) a.s.l. and drifted in multiple directions. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to remain outside of the 2-km exclusion zone.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia’s most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Elevation 1103 m

Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 15, 16-19, and 21 March that sent ash plumes up to 4.5 km (14,800 ft) a.s.l. Ash fell in Severo-Kurilsk during 15-16 and 21 March. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Fuego, Guatemala

14.473°N, 90.88°W, Elevation 3763 m

On 22 March INSIVUMEH reported that activity at Fuego had increased during the previous few days. There were 15-20 explosions per hour producing ashplumes that rose as high as 1.3 km above the summit and drifted 20-30 km E, SE, S, SW, and W. Ashfall was reported in communities downwind including La Rochela, Ceylán, San Andrés Osuna, Las Palmas, Siquinalá, and Santa Lucia Cotzumalguapa (23 km SW). Shock waves vibrated residential structures within 20 km. The explosions also caused avalanches of material from the crater that traveled down the Seca (W), Ceniza (SSW), Taniluyá (SW), Trinidad (S), Las Lajas (SE), and Honda ravines. In the evening on 21 March and early morning hours of 22 March lava fountains rose 350 m above the summit.

During 23-26 March explosions occurred at a rate of 15-25 per hour, generating ash plumes that rose as high as 1.2 km and drifted 15-20 km W, S, and SE. Explosions sometimes vibrated nearby residences. Incandescent material was ejected 200-300 m high and caused avalanches of material that traveled down Seca, Taniluyá, Ceniza, Trinidad, Las Lajas, and Honda ravines, sometimes reaching vegetated areas. Ashfall as reported in areas downwind including Panimache I (8 km SW), Morelia (8 km SW), Santa Sofia (12 km SE), La Rochela, and San Andrés Osuna.

Geological summary: Volcán Fuego, one of Central America’s most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala’s former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Ibu, Halmahera (Indonesia)

1.488°N, 127.63°E, Elevation 1325 m

The Darwin VAAC reported that a minor ash plume from Ibu rose to an altitude of 2.4 km (8,000 ft) a.s.l., drifted about 17 km NE, and dissipated. An ash plume rose to an altitude of 2.1 km (7,000 ft) a.s.l. later that day, and to 2.4 km on 23 March; both plumes drifted E. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to stay at least 2 km away from the active crater, and 3.5 km away on the N side.

Geological summary: The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Karymsky, Eastern Kamchatka (Russia)

54.049°N, 159.443°E, Elevation 1513 m

KVERT reported that a thermal anomaly over Karymsky was visible in satellite images on 17 March. The volcano was quiet or obscured by clouds on the other days during 15-22 March. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Karymsky, the most active volcano of Kamchatka’s eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Kilauea, Hawaiian Islands (USA)

19.421°N, 155.287°W, Elevation 1222 m

HVO reported that during the previous several months monitoring data at Kilauea showed relatively low rates of seismicity, deformation, and gas emissions at the summit and East Rift Zone (ERZ) (including the area of the 2018 eruption). As a result, HVO lowered the Volcano Alert Level to Normal and the Aviation Color Code to Green.

Geological summary: Kilauea, which overlaps the E flank of the massive Mauna Loa shield volcano, has been Hawaii’s most active volcano during historical time. Eruptions are prominent in Polynesian legends; written documentation extending back to only 1820 records frequent summit and flank lava flow eruptions that were interspersed with periods of long-term lava lake activity that lasted until 1924 at Halemaumau crater, within the summit caldera. The 3 x 5 km caldera was formed in several stages about 1500 years ago and during the 18th century; eruptions have also originated from the lengthy East and SW rift zones, which extend to the sea on both sides of the volcano. About 90% of the surface of the basaltic shield volcano is formed of lava flows less than about 1100 years old; 70% of the volcano’s surface is younger than 600 years. A long-term eruption from the East rift zone that began in 1983 has produced lava flows covering more than 100 km2, destroying nearly 200 houses and adding new coastline to the island. This volcano is located within the Hawaiian Islands, a UNESCO World Heritage property.

Krakatau, Indonesia

6.102°S, 105.423°E, Elevation 813 m

PVMBG reported that a total of six explosions at Anak Krakatau were recorded on 18 March, with dense white plumes rising as high as 500 m from the summit. During 18-24 March no other plumes were noted although weather conditions often prevented visual observations. Events were recorded at 0301 and 0305 on 24 March, though ash plumes were not visible. The Alert Level remained at 3 (on a scale of 1-4), and residents were warned to remain outside of the 5-km radius hazard zone from the crater.

Geological summary: The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan volcanoes, and left only a remnant of Rakata volcano. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927. This volcano is located within the Ujung Kulon National Park, a UNESCO World Heritage property.

Manam, Papua New Guinea

4.08°S, 145.037°E, Elevation 1807 m

The Darwin VAAC reported that during 19-22 March ash plumes from Manam rose to an altitude of 4.6 km (15,000 ft) a.s.l. and drifted E and SE based on satellite data and ground-based observations.

Geological summary: The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country’s most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These “avalanche valleys” channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island’s shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Merapi, Central Java (Indonesia)

7.54°S, 110.446°E, Elevation 2910 m

PVMBG reported that the slow extrusion of a lava dome in Merapi’s summit crater continued during 17-24 March. By 21 March the lava dome had grown to an estimated size of 472,000 cubic meters based on analyses of drone footage. There were no apparent morphological changes; most of the extruded lava fell into the upper parts of the Gendol River drainage on the SE flank. Block-and-ash flows traveled as far as 1,500 m down the Gendol drainage during 18-19 and 23 March. The Alert Level remained at 2 (on a scale of 1-4), and residents were warned to remain outside of the 3-km exclusion zone.

Geological summary: Merapi, one of Indonesia’s most active volcanoes, lies in one of the world’s most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Rincon de la Vieja, Costa Rica

10.83°N, 85.324°W, Elevation 1916 m

OVSICORI-UNA reported that a small event at Rincón de la Vieja was recorded at 1851 on 19 March.

Geological summary: Rincón de la Vieja, the largest volcano in NW Costa Rica, is a remote volcanic complex in the Guanacaste Range. The volcano consists of an elongated, arcuate NW-SE-trending ridge that was constructed within the 15-km-wide early Pleistocene Guachipelín caldera, whose rim is exposed on the south side. Sometimes known as the “Colossus of Guanacaste,” it has an estimated volume of 130 km3 and contains at least nine major eruptive centers. Activity has migrated to the SE, where the youngest-looking craters are located. The twin cone of 1916-m-high Santa María volcano, the highest peak of the complex, is located at the eastern end of a smaller, 5-km-wide caldera and has a 500-m-wide crater. A plinian eruption producing the 0.25 km3 Río Blanca tephra about 3500 years ago was the last major magmatic eruption. All subsequent eruptions, including numerous historical eruptions possibly dating back to the 16th century, have been from the prominent active crater containing a 500-m-wide acid lake located ENE of Von Seebach crater. This volcano is located within the Area de Conservación Guanacaste, a UNESCO World Heritage property.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Elevation 3283 m

KVERT reported that a thermal anomaly over Sheveluch’s lava dome was identified daily in satellite images during 15-22 March. Strong gas-and-steam emissions containing variable amounts of ash rose 3.5-4 km (11,500-13,100 ft) a.s.l. and drifted 105 km E during 15-17 March. The Aviation Color Coderemained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka’s largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Suwanosejima, Ryukyu Islands (Japan)

29.638°N, 129.714°E, Elevation 796 m

JMA reported that crater incandescence at Suwanosejima’s Ontake Crater was visible at night during 22 15-22 March. Small events were occasionally recorded, generating plumes that rose as high as 600 m above the crater rim. The Alert Level remained at 2 (on a 5-level scale).

Geological summary: The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan’s most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Turrialba, Costa Rica

10.025°N, 83.767°W, Elevation 3340 m

OVSICORI-UNA reported a period of continuous emissions from Turrialba during 20-22 March. The emissions were characterized as white water vapor plumes with periodic pulses of diffuse ash rising 300 m above the vent rim and drifting W and SW. A sulfur odor was noted in Tierra Blanca de Cartago on 22 March. Only water vapor plumes with a low concentration of magmatic gases were visible during 23-26 March.

Geological summary: Turrialba, the easternmost of Costa Rica’s Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Source: GVP

Leave a Reply