Volcanoes

The Weekly Volcanic Activity Report: February 20 – 26, 2019. New activity/unrest was reported for 6 volcanoes. Ongoing activity was reported for 14 volcanoes during the same period.

Blog note. Jesus indicated that ‘fearful sights’ (various natural disasters) would occur leading up to the time known as the Tribulation and Great Tribulation (a combined seven year period of great destruction on earth). Although these types of things have occurred in the past for centuries and thousands of years, they could be identified as the ‘season of the times’ due to the ferociousness of these events. They would be occurring in greater intensity, severity, frequency, size, duration, scope … just like the pains that a woman experiences in labor the farther along she is in the labor process. We are in the ‘season of the times’ that comes just before the seven (7) year Tribulation/Great Tribulation period

… And great earthquakes shall be in diverse places, and famines, and pestilences; and fearful sights and great signs shall there be from heaven. (Luke 21:11).

… And there shall be signs in the sun, and in the moon, and in the stars; and upon the earth distress of nations, with perplexity; the sea and the waves roaring; (Luke 21:25)

… Men’s hearts failing them for fear, and for looking after those things which are coming on the earth: for the powers of heaven shall be shaken; (Luke 21:26)

… This know also, that in the last days perilous times shall come. (2 Timothy 3:1)

Jesus is giving a series of prophecies about what to look for as the age of grace comes to a close. These verses are several of many such prophecies from throughout the Bible. 2017 was the worst year in recorded history for the intensity, frequency, severity, duration and occurrence of a large number of severe natural disasters worldwide. Earthquakes, volcanoes, hurricanes, typhoons, cyclones, torrential flooding, unprecedented wildfires in unusual places, devastating droughts, excessive/scorching heat setting records everywhere, record snowfalls in Europe and Russia. Snow in the Arabia. This list can go on. Most studied Eschatologists believe these ‘fearful sights’ and massive natural disasters are all part of the ‘CONVERGENCE’ of signs that this Biblical and prophetic age is closing. Most people who study prophecy are familiar with the routine reference(s) made that these things will be like a woman having labor pains that occur in greater severity, frequency, size and duration prior to giving birth. End of note.

The Weekly Volcanic Activity Report: February 20 – 26, 2019

Posted by Teo Blašković on February 27, 2019. Watchers.news

New activity/unrest was reported for 6 volcanoes from February 20 – 26, 2019. Ongoing activity was reported for 14 volcanoes during the same period.

New activity/unrest: Bezymianny, Central Kamchatka (Russia) | Karangetang, Siau Island (Indonesia) | Karymsky, Eastern Kamchatka (Russia) | Piton de la Fournaise, Reunion Island (France) | Poas, Costa Rica | Semeru, Eastern Java (Indonesia).

Ongoing activity: Agung, Bali (Indonesia) | Aira, Kyushu (Japan) | Cleveland, Chuginadak Island (USA) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Great Sitkin, Andreanof Islands (USA) | Ibu, Halmahera (Indonesia) | Kadovar, Papua New Guinea | Krakatau, Indonesia | Merapi, Central Java (Indonesia) | Sabancaya, Peru | Sheveluch, Central Kamchatka (Russia) | Suwanosejima, Ryukyu Islands (Japan) | Turrialba, Costa Rica.

New activity/unrest

Bezymianny, Central Kamchatka (Russia)

55.972°N, 160.595°E, Summit elev. 2882 m

On 27 February KVERT reported increased activity at Bezymianny characterized by nighttime crater incandescence, hot avalanches originating from the lava dome, and occasionally strong fumarolic activity. The report noted that the temperature of the thermal anomaly was gradually increasing. The Aviation Color Code was raised to Orange (the second highest level on a four-color scale).

Geological summary: Prior to its noted 1955-56 eruption, Bezymianny had been considered extinct. The modern volcano, much smaller in size than its massive neighbors Kamen and Kliuchevskoi, was formed about 4700 years ago over a late-Pleistocene lava-dome complex and an ancestral edifice built about 11,000-7000 years ago. Three periods of intensified activity have occurred during the past 3000 years. The latest period, which was preceded by a 1000-year quiescence, began with the dramatic 1955-56 eruption. This eruption, similar to that of St. Helens in 1980, produced a large horseshoe-shaped crater that was formed by collapse of the summit and an associated lateral blast. Subsequent episodic but ongoing lava-dome growth, accompanied by intermittent explosive activity and pyroclastic flows, has largely filled the 1956 crater.

Karangetang, Siau Island (Indonesia)

2.781°N, 125.407°E, Summit elev. 1797 m

PVMBG reported that during 20-26 February dense white plumes rose as high as 500 m above the rims of Karangetang’s Main Crater and Kawah Dua (North Crater). The Alert Level remained at 3 (on a scale of 1-4), and residents were warned to remain outside of the 2.5-km exclusion zone around the N and S craters, and additionally within 3 km WNW and 4 km NW.

Geological summary: Karangetang (Api Siau) volcano lies at the northern end of the island of Siau, north of Sulawesi. The stratovolcano contains five summit craters along a N-S line. It is one of Indonesia’s most active volcanoes, with more than 40 eruptions recorded since 1675 and many additional small eruptions that were not documented in the historical record (Catalog of Active Volcanoes of the World: Neumann van Padang, 1951). Twentieth-century eruptions have included frequent explosive activity sometimes accompanied by pyroclastic flows and lahars. Lava dome growth has occurred in the summit craters; collapse of lava flow fronts has also produced pyroclastic flows.

Karymsky, Eastern Kamchatka (Russia)

54.049°N, 159.443°E, Summit elev. 1513 m

KVERT reported that ash plumes from Karymsky were identified in satellite images drifting 200 km E during 16-20 February, and a thermal anomaly was visible during 16 and 18-20 February. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: Karymsky, the most active volcano of Kamchatka’s eastern volcanic zone, is a symmetrical stratovolcano constructed within a 5-km-wide caldera that formed during the early Holocene. The caldera cuts the south side of the Pleistocene Dvor volcano and is located outside the north margin of the large mid-Pleistocene Polovinka caldera, which contains the smaller Akademia Nauk and Odnoboky calderas. Most seismicity preceding Karymsky eruptions originated beneath Akademia Nauk caldera, located immediately south. The caldera enclosing Karymsky formed about 7600-7700 radiocarbon years ago; construction of the stratovolcano began about 2000 years later. The latest eruptive period began about 500 years ago, following a 2300-year quiescence. Much of the cone is mantled by lava flows less than 200 years old. Historical eruptions have been vulcanian or vulcanian-strombolian with moderate explosive activity and occasional lava flows from the summit crater.

Piton de la Fournaise, Reunion Island (France)

21.244°S, 55.708°E, Summit elev. 2632 m

OVPF reported that activity continued during 20-26 February from the fissure that opened on 19 February; the site is at 1,800 m elevation at the foot of Piton Madoré, E of Piton de la Fournaise’s Dolomieu Crater. On 21 February scientists mapped the slowly eastward-advancing flows (and also those that had erupted on 18 February). They noted that the cone at the vent was growing, and hosted a lava lake that ejected spatter from bursting gas bubbles. A channelized lava flow traveled 1 km E and descended 200 m elevation before splitting into two flows near Guyanin Crater. The more northern of the two flows was 50 m wide and had progressed as far as 1,320 m elevation. The second more southerly flow was 200 m wide and itself split into two flows about 300 m SE of Guyanin Crater; one branch went to about 1,350 m elevation and the other to 1,300 m. Overall the longest part of the lava flow had traveled 1.9 km from the vent. During 22-26 February the lava emission rate was variable up to 16 cubic meters per second (based on satellite data), though webcam images from 24 February indicated that the flow had not significantly advanced.

Geological summary: The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world’s most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Poas, Costa Rica

10.2°N, 84.233°W, Summit elev. 2708 m

OVSICORI-UNA reported that during 23-26 February seismicity at Poás was dominated by low-frequency events. Robust gas emissions rose from four fumarolic vents in the area previously covered by a lake, though the most vigorous emissions originated from vent A (Boca Roja). Minor incandescence from vent A was sometimes visible at night. A sulfur odor was reported in areas downwind including Naranjo, Zarcero, and Grecia (16 km SW). Particles of molten sulfur were included in ash deposits collected in Naranjo. Ashfall was reported in Canoas de Alajuela on 26 February.

Geological summary: The broad, well-vegetated edifice of Poás, one of the most active volcanoes of Costa Rica, contains three craters along a N-S line. The frequently visited multi-hued summit crater lakes of the basaltic-to-dacitic volcano, which is one of Costa Rica’s most prominent natural landmarks, are easily accessible by vehicle from the nearby capital city of San José. A N-S-trending fissure cutting the 2708-m-high complex stratovolcano extends to the lower northern flank, where it has produced the Congo stratovolcano and several lake-filled maars. The southernmost of the two summit crater lakes, Botos, is cold and clear and last erupted about 7500 years ago. The more prominent geothermally heated northern lake, Laguna Caliente, is one of the world’s most acidic natural lakes, with a pH of near zero. It has been the site of frequent phreatic and phreatomagmatic eruptions since the first historical eruption was reported in 1828. Eruptions often include geyser-like ejections of crater-lake water.

Semeru, Eastern Java (Indonesia)

8.108°S, 112.922°E, Summit elev. 3657 m

Based on analysis of satellite images, the Darwin VAAC reported that on 24 February an ash plume from Semeru rose to an altitude of 4.3 km (14,000 ft) a.s.l. and drifted W.

Geological summary: Semeru, the highest volcano on Java, and one of its most active, lies at the southern end of a volcanic massif extending north to the Tengger caldera. The steep-sided volcano, also referred to as Mahameru (Great Mountain), rises above coastal plains to the south. Gunung Semeru was constructed south of the overlapping Ajek-ajek and Jambangan calderas. A line of lake-filled maars was constructed along a N-S trend cutting through the summit, and cinder cones and lava domes occupy the eastern and NE flanks. Summit topography is complicated by the shifting of craters from NW to SE. Frequent 19th and 20th century eruptions were dominated by small-to-moderate explosions from the summit crater, with occasional lava flows and larger explosive eruptions accompanied by pyroclastic flows that have reached the lower flanks of the volcano.

Ongoing activity

Agung, Bali (Indonesia)

8.343°S, 115.508°E, Summit elev. 2997 m

PVMBG reported that at 1631 on 22 February an event at Agung generated an ash plume that rose 700 m and drifted E. The Alert Level remained at 3 (on a scale of 1-4) with the exclusion zone set at a 4-km radius.

Geological summary: Symmetrical Agung stratovolcano, Bali’s highest and most sacred mountain, towers over the eastern end of the island. The volcano, whose name means “Paramount,” rises above the SE caldera rim of neighboring Batur volcano, and the northern and southern flanks extend to the coast. The summit area extends 1.5 km E-W, with the high point on the W and a steep-walled 800-m-wide crater on the E. The Pawon cone is located low on the SE flank. Only a few eruptions dating back to the early 19th century have been recorded in historical time. The 1963-64 eruption, one of the largest in the 20th century, produced voluminous ashfall along with devastating pyroclastic flows and lahars that caused extensive damage and many fatalities.

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Summit elev. 1117 m

JMA reported that incandescence from Minamidake crater (at Aira Caldera’s Sakurajima volcano) was occasionally visible during 18-25 February. At 0059 on 22 February an event generated a plume that rose 1 km above the crater rim and ejected material 600-900 m from the crater. During 22-25 February there were two events, one of which was explosive. Plumes rose as high as 1.2 km, and material as ejected as far as 900 m from the crater. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan’s most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu’s largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Cleveland, Chuginadak Island (USA)

52.825°N, 169.944°W, Summit elev. 1730 m

AVO reported that unrest at Cleveland continued during 20-24 February, though no activity was detected in seismic or infrasound data. Elevated surface temperatures were identified in satellite images; weather clouds sometimes prevented views of the volcano. Satellite data showed continued subsidence of the lava dome with no evidence of new lava. On 25 February the Aviation Color Code was lowered to Yellow and the Volcano Alert Level was lowered to Advisory.

Geological summary: The beautifully symmetrical Mount Cleveland stratovolcano is situated at the western end of the uninhabited, dumbbell-shaped Chuginadak Island. It lies SE across Carlisle Pass strait from Carlisle volcano and NE across Chuginadak Pass strait from Herbert volcano. Joined to the rest of Chuginadak Island by a low isthmus, Cleveland is the highest of the Islands of the Four Mountains group and is one of the most active of the Aleutian Islands. The native name, Chuginadak, refers to the Aleut goddess of fire, who was thought to reside on the volcano. Numerous large lava flows descend the steep-sided flanks. It is possible that some 18th-to-19th century eruptions attributed to Carlisle should be ascribed to Cleveland (Miller et al., 1998). In 1944 Cleveland produced the only known fatality from an Aleutian eruption. Recent eruptions have been characterized by short-lived explosive ash emissions, at times accompanied by lava fountaining and lava flows down the flanks.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Summit elev. 1229 m

Based on satellite data, wind model data, and notices from PVMBG, the Darwin VAAC reported that during 20-24 February ash plumes from Dukono rose to altitudes of 1.8-2.7 km (6,000-9,000 ft) a.s.l. and drifted W, SW, SE, and E. The Alert Level remained at 2 (on a scale of 1-4), and visitors were warned to remain outside of the 2-km exclusion zone.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia’s most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Summit elev. 1103 m

Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 15-22 February that sent ash plumes to 3.6 km (11,800 ft) a.s.l. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Great Sitkin, Andreanof Islands (USA)

52.076°N, 176.13°W, Summit elev. 1740 m

On 25 February AVO reported that seismicity at Great Sitkin had decreased to background levels during the past month and there was no evidence of explosive activity. The Aviation Color Code was lowered to Green and the Volcano Alert Level was lowered to Normal.

Geological summary: The Great Sitkin volcano forms much of the northern side of Great Sitkin Island. A younger parasitic volcano capped by a small, 0.8 x 1.2 km ice-filled summit caldera was constructed within a large late-Pleistocene or early Holocene scarp formed by massive edifice failure that truncated an ancestral volcano and produced a submarine debris avalanche. Deposits from this and an older debris avalanche from a source to the south cover a broad area of the ocean floor north of the volcano. The summit lies along the eastern rim of the younger collapse scarp. Deposits from an earlier caldera-forming eruption of unknown age cover the flanks of the island to a depth up to 6 m. The small younger caldera was partially filled by lava domes emplaced in 1945 and 1974, and five small older flank lava domes, two of which lie on the coastline, were constructed along northwest- and NNW-trending lines. Hot springs, mud pots, and fumaroles occur near the head of Big Fox Creek, south of the volcano. Historical eruptions have been recorded since the late-19th century.

Ibu, Halmahera (Indonesia)

1.488°N, 127.63°E, Summit elev. 1325 m

Based on satellite and wind model data, the Darwin VAAC reported that during 25-26 February ash plumes from Ibu rose to altitudes of 2.4-3 km (8,000-10,000 ft) a.s.l. and drifted NE and ENE. A thermal anomaly was also visible. The Alert Level remained at 2 (on a scale of 1-4), and the public was warned to stay at least 2 km away from the active crater, and 3.5 km away on the N side.

Geological summary: The truncated summit of Gunung Ibu stratovolcano along the NW coast of Halmahera Island has large nested summit craters. The inner crater, 1 km wide and 400 m deep, contained several small crater lakes through much of historical time. The outer crater, 1.2 km wide, is breached on the north side, creating a steep-walled valley. A large parasitic cone is located ENE of the summit. A smaller one to the WSW has fed a lava flow down the W flank. A group of maars is located below the N and W flanks. Only a few eruptions have been recorded in historical time, the first a small explosive eruption from the summit crater in 1911. An eruption producing a lava dome that eventually covered much of the floor of the inner summit crater began in December 1998.

Kadovar, Papua New Guinea

3.608°S, 144.588°E, Summit elev. 365 m

Based on satellite data and wind model data, the Darwin VAAC reported that on 21 February an ash plume from Kadovar rose to an altitude of 1.8 km (6,000 ft) a.s.l. and drifted ESE.

Geological summary: The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. Kadovar is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. The village of Gewai is perched on the crater rim. A 365-m-high lava dome forming the high point of the andesitic volcano fills an arcuate landslide scarp that is open to the south, and submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. No certain historical eruptions are known; the latest activity was a period of heightened thermal phenomena in 1976.

Krakatau, Indonesia

6.102°S, 105.423°E, Summit elev. 813 m

PVMBG reported that an event at Anak Krakatau began at 1525 on 23 February and lasted four minutes and 31 seconds. An ash plume rose to about 610 m above sea level and drifted ENE. The Alert Level remained at 3 (on a scale of 1-4), and residents were warned to remain outside of the 5-km radius hazard zone from the crater.

Geological summary: The renowned volcano Krakatau (frequently misstated as Krakatoa) lies in the Sunda Strait between Java and Sumatra. Collapse of the ancestral Krakatau edifice, perhaps in 416 or 535 CE, formed a 7-km-wide caldera. Remnants of this ancestral volcano are preserved in Verlaten and Lang Islands; subsequently Rakata, Danan, and Perbuwatan volcanoes were formed, coalescing to create the pre-1883 Krakatau Island. Caldera collapse during the catastrophic 1883 eruption destroyed Danan and Perbuwatan, and left only a remnant of Rakata. This eruption, the 2nd largest in Indonesia during historical time, caused more than 36,000 fatalities, most as a result of devastating tsunamis that swept the adjacent coastlines of Sumatra and Java. Pyroclastic surges traveled 40 km across the Sunda Strait and reached the Sumatra coast. After a quiescence of less than a half century, the post-collapse cone of Anak Krakatau (Child of Krakatau) was constructed within the 1883 caldera at a point between the former cones of Danan and Perbuwatan. Anak Krakatau has been the site of frequent eruptions since 1927.

Merapi, Central Java (Indonesia)

7.54°S, 110.446°E, Summit elev. 2910 m

PVMBG reported that during 15-21 February the volume of the lava dome in Merapi’s summit crater was unchanged from the previous few weeks. There were no apparent morphological changes; most of the extruded lava fell into the upper parts of the Gendol River drainage on the SE flank. White emissions rose as high as 375 m above the crater rim. On 18 February multiple block-and-ash flows traveled at most 1 km down the Gendol drainage. The Alert Level remained at 2 (on a scale of 1-4), and residents were warned to remain outside of the 3-km exclusion zone.

Geological summary: Merapi, one of Indonesia’s most active volcanoes, lies in one of the world’s most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Sabancaya, Peru

15.787°S, 71.857°W, Summit elev. 5960 m

Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that an average of 20 explosions per day occurred at Sabancaya during 18-24 February. Long-period seismic events were recorded, and hybrid earthquakes were infrequent and of low magnitude. Although weather conditions sometimes prevented visual observations, gas-and-ash plumes were seen rising as high as 2.2 km above the crater rim and drifted 30 km SW. MIROVA detected two thermal anomalies. The report noted that the public should not approach the crater within a 12-km radius.

Geological summary: Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning “tongue of fire” in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Summit elev. 3283 m

KVERT reported that during 15-22 February Sheveluch’s lava dome continued to grow, extruding blocks on the N side, and producing hot avalanches and fumarolic plumes. A thermal anomaly was identified in satellite images daily. Video and satellite data recorded gas-and-steam plumes with variable ash content rising 4-5 km (13,100-16,400 ft) a.s.l. and drifting W and E. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka’s largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Suwanosejima, Ryukyu Islands (Japan)

29.638°N, 129.714°E, Summit elev. 796 m

JMA reported that crater incandescence at Suwanosejima’s Ontake Crater was visible at night during 15-22 February. Small events were occasionally recorded, generating plumes that rose as high as 900 m above the crater rim. The Alert Level remained at 2 (on a 5-level scale).

Geological summary: The 8-km-long, spindle-shaped island of Suwanosejima in the northern Ryukyu Islands consists of an andesitic stratovolcano with two historically active summit craters. The summit of the volcano is truncated by a large breached crater extending to the sea on the east flank that was formed by edifice collapse. Suwanosejima, one of Japan’s most frequently active volcanoes, was in a state of intermittent strombolian activity from Otake, the NE summit crater, that began in 1949 and lasted until 1996, after which periods of inactivity lengthened. The largest historical eruption took place in 1813-14, when thick scoria deposits blanketed residential areas, and the SW crater produced two lava flows that reached the western coast. At the end of the eruption the summit of Otake collapsed forming a large debris avalanche and creating the horseshoe-shaped Sakuchi caldera, which extends to the eastern coast. The island remained uninhabited for about 70 years after the 1813-1814 eruption. Lava flows reached the eastern coast of the island in 1884. Only about 50 people live on the island.

Turrialba, Costa Rica

10.025°N, 83.767°W, Summit elev. 3340 m

OVSICORI-UNA reported that an event at Turrialba on 21 February generated a plume that rose 300 m and drifted NW. Frequent ash pulses were recorded that day. Ash emissions were frequent during 22-24 February, though of variable intensity and duration. Plumes rose as high as 300 m and drifted NW and SW. On 22 February ashfall was reported in Santa Cruz (31 km WSW) and Santa Ana, and a sulfur odor was evident in Moravia (31 km WSW). Cloudy weather conditions prevented visual observations of the vent during 25-26 February.

Geological summary: Turrialba, the easternmost of Costa Rica’s Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Source: GVP

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s