Volcanoes

The Weekly Volcanic Activity Report: New activity/unrest was reported for 8 volcanoes between October 10 and 16, 2018. During the same period, ongoing activity was reported for 12 volcanoes.

Blog note: And great earthquakes shall be in diverse places, and famines, and pestilences; and fearful sights and great signs shall there be from heaven. (Luke 21:11). Jesus is giving a series of prophecies about what to look for as the age of grace comes to a close. This verse from Luke is one of many such prophecies from throughout the Bible. 2017 was the worst year in recorded history for the intensity, frequency, severity, duration and occurrence of a large number of severe natural disasters worldwide. Earthquakes, volcanoes, hurricanes, typhoons, cyclones, torrential flooding, unprecedented wildfires in unusual places, devastating droughts, excessive/scorching heat setting records everywhere, record snowfalls in Europe and Russia. Snow in the Arabia. This list can go on. Most studied eschatologists believe these ‘fearful sights’ and massive natural disasters are all part of the ‘CONVERGENCE’ of signs that this Biblical and prophetic age is closing. Most people who study prophecy are familiar with the routine reference(s) made that these things will be like a woman having labor pains that occur in greater severity, frequency, size and duration prior to giving birth. End of note.

The Weekly Volcanic Activity Report: October 10 – 16, 2018

Posted by TW on October 18, 2018. Watchers.news.

New activity/unrest was reported for 8 volcanoes between October 10 and 16, 2018. During the same period, ongoing activity was reported for 12 volcanoes.

New activity/unrest: Cuicocha, Ecuador | Gamalama, Halmahera (Indonesia) | Piton de la Fournaise, Reunion Island (France) | Sangeang Api, Indonesia | Sarychev Peak, Matua Island (Russia) | Semisopochnoi, United States | Soputan, Sulawesi (Indonesia) | Ulawun, New Britain (Papua New Guinea).

Ongoing activity: Aira, Kyushu (Japan) | Dukono, Halmahera (Indonesia) | Ebeko, Paramushir Island (Russia) | Fuego, Guatemala | Kadovar, Papua New Guinea | Manam, Papua New Guinea | Merapi, Central Java (Indonesia) | Pacaya, Guatemala | Sabancaya, Peru | Sheveluch, Central Kamchatka (Russia) | Turrialba, Costa Rica | Veniaminof, United States.

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian’s Global Volcanism Program and the US Geological Survey’s Volcano Hazards Program. Updated by 23:00 UTC every Wednesday, notices of volcanic activity posted are preliminary and subject to change as events are studied in more detail. This is not a comprehensive list of all of Earth’s volcanoes erupting during the week. Carefully reviewed, detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism Network.

New activity/unrest

Cuicocha, Ecuador

0.308°N, 78.364°W, Summit elev. 3246 m

IG reported that, after an earthquake swarm consisting of 62 volcano-tectonic events during 2-3 October, seismicity at Cuicocha returned to background levels on 4 October. Carbon dioxide levels were normal, and deformation data did not show any anomalies.

Geological summary: The scenic lake-filled Cuicocha caldera is located at the southern foot of the sharp-peaked Pleistocene Cotacachi stratovolcano about 100 km N of Quito. Both Cotacachi and Cuicocha were constructed along the Otavalo-Umpalá fracture zone. Eruptive activity began about 4500 years ago and continued until about 1300 years ago. The 3-km-wide, steep-walled caldera was created during a major explosive eruption about 3100 years ago that produced nearly 5 km3 of pyroclastic-flow and fall deposits. Four intra-caldera lava domes form two steep-sided forested islands in the 148-m-deep lake. A pre-caldera lava dome is situated on the outer E side of the caldera. Pyroclastic-flow deposits cover wide areas around the low-rimmed caldera, primarily to the east. Gas emission continues from several locations in the caldera lake.

Gamalama, Halmahera (Indonesia)

0.8°N, 127.33°E, Summit elev. 1715 m

On 10 October PVMBG reported only gas emissions (mostly water vapor) from Gamalama; the Aviation Color Code was lowered to Yellow. The Alert Level remained at 2 (on a scale of 1-4); visitors and residents were warned not to approach the crater within a 1.5-km radius.

Geological summary: Gamalama is a near-conical stratovolcano that comprises the entire island of Ternate off the western coast of Halmahera, and is one of Indonesia’s most active volcanoes. The island was a major regional center in the Portuguese and Dutch spice trade for several centuries, which contributed to the thorough documentation of Gamalama’s historical activity. Three cones, progressively younger to the north, form the summit. Several maars and vents define a rift zone, parallel to the Halmahera island arc, that cuts the volcano. Eruptions, recorded frequently since the 16th century, typically originated from the summit craters, although flank eruptions have occurred in 1763, 1770, 1775, and 1962-63.

Piton de la Fournaise, Reunion Island (France)

21.244°S, 55.708°E, Summit elev. 2632 m

OVPF reported that the eruption at Piton de la Fournaise continued during 10-16 October, though webcam images indicated that the lava-flow front had not significantly progressed since 8 October. The lava lake in the cone was at a low level. Strong gas emissions rose from the main vent as well as from the lava tube, just downstream from the vent.

Geological summary: The massive Piton de la Fournaise basaltic shield volcano on the French island of Réunion in the western Indian Ocean is one of the world’s most active volcanoes. Much of its more than 530,000-year history overlapped with eruptions of the deeply dissected Piton des Neiges shield volcano to the NW. Three calderas formed at about 250,000, 65,000, and less than 5000 years ago by progressive eastward slumping of the volcano. Numerous pyroclastic cones dot the floor of the calderas and their outer flanks. Most historical eruptions have originated from the summit and flanks of Dolomieu, a 400-m-high lava shield that has grown within the youngest caldera, which is 8 km wide and breached to below sea level on the eastern side. More than 150 eruptions, most of which have produced fluid basaltic lava flows, have occurred since the 17th century. Only six eruptions, in 1708, 1774, 1776, 1800, 1977, and 1986, have originated from fissures on the outer flanks of the caldera. The Piton de la Fournaise Volcano Observatory, one of several operated by the Institut de Physique du Globe de Paris, monitors this very active volcano.

Sangeang Api, Indonesia

8.2°S, 119.07°E, Summit elev. 1949 m

Based on a VONA from PVMBG an ash emission from Sangeang Api was generated at 1338 on 15 October; it rose 250 m above the summit and drifted SW, W, and NW. The VONA noted that the ash emission possibly rose higher than what a ground observer had estimated. Seismic data was dominated by signals indicating emissions as well as local tectonic earthquakes. The Aviation Color Code was changed from Yellow to Orange.

Geological summary: Sangeang Api volcano, one of the most active in the Lesser Sunda Islands, forms a small 13-km-wide island off the NE coast of Sumbawa Island. Two large trachybasaltic-to-tranchyandesitic volcanic cones, 1949-m-high Doro Api and 1795-m-high Doro Mantoi, were constructed in the center and on the eastern rim, respectively, of an older, largely obscured caldera. Flank vents occur on the south side of Doro Mantoi and near the northern coast. Intermittent historical eruptions have been recorded since 1512, most of them during in the 20th century.

Sarychev Peak, Matua Island (Russia)

48.092°N, 153.2°E, Summit elev. 1496 m

Based on Tokyo VAAC data and satellite images, KVERT reported that at 1330 on 10 October an ash plume from Sarychev Peak rose to 1.7-2 km (5,600-6,600 ft) a.s.l. and drifted 95 km E. SVERT reported that on 15 October an ash plume rose 2.1 km (7,000 ft) a.s.l. and drifted 65-70 km E. The Aviation Color Code remained at Orange.

Geological summary: Sarychev Peak, one of the most active volcanoes of the Kuril Islands, occupies the NW end of Matua Island in the central Kuriles. The andesitic central cone was constructed within a 3-3.5-km-wide caldera, whose rim is exposed only on the SW side. A dramatic 250-m-wide, very steep-walled crater with a jagged rim caps the volcano. The substantially higher SE rim forms the 1496 m high point of the island. Fresh-looking lava flows, prior to activity in 2009, had descended in all directions, often forming capes along the coast. Much of the lower-angle outer flanks of the volcano are overlain by pyroclastic-flow deposits. Eruptions have been recorded since the 1760s and include both quiet lava effusion and violent explosions. Large eruptions in 1946 and 2009 produced pyroclastic flows that reached the se

Semisopochnoi, United States

51.93°N, 179.58°E, Summit elev. 1221 m

On 11 October AVO reported that satellite data of Semisopochnoi indicated partial erosion of a tephra cone in the crater of Cerberus’s N cone. A crater lake about 90 m in diameter filled the vent. The data also suggested that the vent had not erupted since 1 October. Seismicity remained elevated and above background levels. The next day AVO lowered the Aviation Color Code to Yellow and the Volcano Alert Level to Advisory, noting the recent satellite data results and lack of tremor recorded during the previous week.

Geological summary: Semisopochnoi, the largest subaerial volcano of the western Aleutians, is 20 km wide at sea level and contains an 8-km-wide caldera. It formed as a result of collapse of a low-angle, dominantly basaltic volcano following the eruption of a large volume of dacitic pumice. The high point of the island is 1221-m-high Anvil Peak, a double-peaked late-Pleistocene cone that forms much of the island’s northern part. The three-peaked 774-m-high Mount Cerberus volcano was constructed during the Holocene within the caldera. Each of the peaks contains a summit crater; lava flows on the northern flank of Cerberus appear younger than those on the southern side. Other post-caldera volcanoes include the symmetrical 855-m-high Sugarloaf Peak SSE of the caldera and Lakeshore Cone, a small cinder cone at the edge of Fenner Lake in the NE part of the caldera. Most documented historical eruptions have originated from Cerberus, although Coats (1950) considered that both Sugarloaf and Lakeshore Cone within the caldera could have been active during historical time.

Soputan, Sulawesi (Indonesia)

1.112°N, 124.737°E, Summit elev. 1785 m

On 16 October PVMBG issued a VONA noting only white emissions at Soputan; the Aviation Color Code was lowered to Yellow.

Geological summary: The Soputan stratovolcano on the southern rim of the Quaternary Tondano caldera on the northern arm of Sulawesi Island is one of Sulawesi’s most active volcanoes. The youthful, largely unvegetated volcano rises to 1784 m and is located SW of Riendengan-Sempu, which some workers have included with Soputan and Manimporok (3.5 km ESE) as a volcanic complex. It was constructed at the southern end of a SSW-NNE trending line of vents. During historical time the locus of eruptions has included both the summit crater and Aeseput, a prominent NE-flank vent that formed in 1906 and was the source of intermittent major lava flows until 1924.

Ulawun, New Britain (Papua New Guinea)

5.05°S, 151.33°E, Summit elev. 2334 m

RVO reported that during 1-12 October white and sometimes light gray emissions rose from Ulawun’s summit crater. Seismicity was low.

Geological summary: The symmetrical basaltic-to-andesitic Ulawun stratovolcano is the highest volcano of the Bismarck arc, and one of Papua New Guinea’s most frequently active. The volcano, also known as the Father, rises above the north coast of the island of New Britain across a low saddle NE of Bamus volcano, the South Son. The upper 1000 m is unvegetated. A prominent E-W escarpment on the south may be the result of large-scale slumping. Satellitic cones occupy the NW and E flanks. A steep-walled valley cuts the NW side, and a flank lava-flow complex lies to the south of this valley. Historical eruptions date back to the beginning of the 18th century. Twentieth-century eruptions were mildly explosive until 1967, but after 1970 several larger eruptions produced lava flows and basaltic pyroclastic flows, greatly modifying the summit crater.

Ongoing activity

Aira, Kyushu (Japan)

31.593°N, 130.657°E, Summit elev. 1117 m

JMA reported occasional, very small events at Minamidake crater (at Aira Caldera’s Sakurajima volcano) during 9-15 October. Sulfur dioxide emissions decreased from 3,400 tons/day on 4 October to 600 tons/day on 10 October. The Alert Level remained at 3 (on a 5-level scale).

Geological summary: The Aira caldera in the northern half of Kagoshima Bay contains the post-caldera Sakurajima volcano, one of Japan’s most active. Eruption of the voluminous Ito pyroclastic flow accompanied formation of the 17 x 23 km caldera about 22,000 years ago. The smaller Wakamiko caldera was formed during the early Holocene in the NE corner of the Aira caldera, along with several post-caldera cones. The construction of Sakurajima began about 13,000 years ago on the southern rim of Aira caldera and built an island that was finally joined to the Osumi Peninsula during the major explosive and effusive eruption of 1914. Activity at the Kitadake summit cone ended about 4850 years ago, after which eruptions took place at Minamidake. Frequent historical eruptions, recorded since the 8th century, have deposited ash on Kagoshima, one of Kyushu’s largest cities, located across Kagoshima Bay only 8 km from the summit. The largest historical eruption took place during 1471-76.

Dukono, Halmahera (Indonesia)

1.693°N, 127.894°E, Summit elev. 1229 m

Based on satellite data, wind model data, and notices from PVMBG, the Darwin VAAC reported that during 10-12 October ash plumes from Dukono rose to altitudes of 1.5-2.1 km (5,000-7,000 ft) a.s.l. and drifted W and SW.

Geological summary: Reports from this remote volcano in northernmost Halmahera are rare, but Dukono has been one of Indonesia’s most active volcanoes. More-or-less continuous explosive eruptions, sometimes accompanied by lava flows, occurred from 1933 until at least the mid-1990s, when routine observations were curtailed. During a major eruption in 1550, a lava flow filled in the strait between Halmahera and the north-flank cone of Gunung Mamuya. This complex volcano presents a broad, low profile with multiple summit peaks and overlapping craters. Malupang Wariang, 1 km SW of the summit crater complex, contains a 700 x 570 m crater that has also been active during historical time.

Ebeko, Paramushir Island (Russia)

50.686°N, 156.014°E, Summit elev. 1103 m

Volcanologists in Severo-Kurilsk (Paramushir Island), about 7 km E of Ebeko, observed explosions during 5-12 October that sent ash plumes to 4.5 km (14,800 ft) a.s.l. Satellite images showed ash plumes drifting about 125 km SE on 5 and 8 October, and a thermal anomaly over the volcano on 8 October. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The flat-topped summit of the central cone of Ebeko volcano, one of the most active in the Kuril Islands, occupies the northern end of Paramushir Island. Three summit craters located along a SSW-NNE line form Ebeko volcano proper, at the northern end of a complex of five volcanic cones. Blocky lava flows extend west from Ebeko and SE from the neighboring Nezametnyi cone. The eastern part of the southern crater contains strong solfataras and a large boiling spring. The central crater is filled by a lake about 20 m deep whose shores are lined with steaming solfataras; the northern crater lies across a narrow, low barrier from the central crater and contains a small, cold crescentic lake. Historical activity, recorded since the late-18th century, has been restricted to small-to-moderate explosive eruptions from the summit craters. Intense fumarolic activity occurs in the summit craters, on the outer flanks of the cone, and in lateral explosion craters.

Fuego, Guatemala

14.473°N, 90.88°W, Summit elev. 3763 m

INSIVUMEH and CONRED reported that on 12 October a new phase of activity began at Fuego, characterized by lava fountains rising as high as 400 m above the crater rim, avalanches of incandescent material down the W and SSW flanks, increased rumbling, and a lava flow traveling 1 km down the Santa Teresa (W) drainage. Very frequent explosions generated ash plumes that rose 850 m and drifted 12 km S and SE. On 13 October a steaming lahar descended the Ceniza (SSW) drainage, carrying blocks up to 2 m in diameter, and branches and tree trunks. During 13-16 October explosions (8-18 per hour) produced ash plumes that rose almost 1 km and drifted 8-12 km S, SW, and W. Ashfall was reported in areas downwind including Sangre de Cristo (8 km WSW), Finca Palo Verde, and Panimaché I and II (8 km SW). Incandescent material was ejected 150-200 m high, causing avalanches of material within the crater, though some of the avalanches traveled long distances, reaching vegetated areas. The lava flow on the W flank was still visible but by 14 October no longer active.

Geological summary: Volcán Fuego, one of Central America’s most active volcanoes, is one of three large stratovolcanoes overlooking Guatemala’s former capital, Antigua. The scarp of an older edifice, Meseta, lies between 3763-m-high Fuego and its twin volcano to the north, Acatenango. Construction of Meseta dates back to about 230,000 years and continued until the late Pleistocene or early Holocene. Collapse of Meseta may have produced the massive Escuintla debris-avalanche deposit, which extends about 50 km onto the Pacific coastal plain. Growth of the modern Fuego volcano followed, continuing the southward migration of volcanism that began at Acatenango. In contrast to the mostly andesitic Acatenango, eruptions at Fuego have become more mafic with time, and most historical activity has produced basaltic rocks. Frequent vigorous historical eruptions have been recorded since the onset of the Spanish era in 1524, and have produced major ashfalls, along with occasional pyroclastic flows and lava flows.

Kadovar, Papua New Guinea

3.608°S, 144.588°E, Summit elev. 365 m

Based on satellite data and wind model data, the Darwin VAAC reported that during 10-12 October ash plumes from Kadovar rose to an altitude of 2.4 km (8,000 ft) a.s.l. and drifted NW and W.

Geological summary: The 2-km-wide island of Kadovar is the emergent summit of a Bismarck Sea stratovolcano of Holocene age. Kadovar is part of the Schouten Islands, and lies off the coast of New Guinea, about 25 km N of the mouth of the Sepik River. The village of Gewai is perched on the crater rim. A 365-m-high lava dome forming the high point of the andesitic volcano fills an arcuate landslide scarp that is open to the south, and submarine debris-avalanche deposits occur in that direction. Thick lava flows with columnar jointing forms low cliffs along the coast. The youthful island lacks fringing or offshore reefs. No certain historical eruptions are known; the latest activity was a period of heightened thermal phenomena in 1976.

Manam, Papua New Guinea

4.08°S, 145.037°E, Summit elev. 1807 m

RVO reported that during 2-12 October brown, gray-brown, and dark gray ash emissions rose as high as 1 km above Manam’s Southern Crater rim and drifted NW. Main Crater produced occasional white emissions, though on 2 October plumes were gray-brown and contained ash. Bluish vapor was noted during 3-4 October.

Geological summary: The 10-km-wide island of Manam, lying 13 km off the northern coast of mainland Papua New Guinea, is one of the country’s most active volcanoes. Four large radial valleys extend from the unvegetated summit of the conical 1807-m-high basaltic-andesitic stratovolcano to its lower flanks. These “avalanche valleys” channel lava flows and pyroclastic avalanches that have sometimes reached the coast. Five small satellitic centers are located near the island’s shoreline on the northern, southern, and western sides. Two summit craters are present; both are active, although most historical eruptions have originated from the southern crater, concentrating eruptive products during much of the past century into the SE valley. Frequent historical eruptions, typically of mild-to-moderate scale, have been recorded since 1616. Occasional larger eruptions have produced pyroclastic flows and lava flows that reached flat-lying coastal areas and entered the sea, sometimes impacting populated areas.

Merapi, Central Java (Indonesia)

7.54°S, 110.446°E, Summit elev. 2910 m

PVMBG reported that during 5-11 October the lava dome in Merapi’s summit crater grew slowly at a rate of 3,100 cubic meters per day, though faster than the previous week. By 11 October the volume of the dome was an estimated 160,000 cubic meters. White emissions of variable density rose a maximum of 75 m above the summit. The Alert Level remained at 2 (on a scale of 1-4), and residents were warned to remain outside of the 3-km exclusion zone.

Geological summary: Merapi, one of Indonesia’s most active volcanoes, lies in one of the world’s most densely populated areas and dominates the landscape immediately north of the major city of Yogyakarta. It is the youngest and southernmost of a volcanic chain extending NNW to Ungaran volcano. Growth of Old Merapi during the Pleistocene ended with major edifice collapse perhaps about 2000 years ago, leaving a large arcuate scarp cutting the eroded older Batulawang volcano. Subsequently growth of the steep-sided Young Merapi edifice, its upper part unvegetated due to frequent eruptive activity, began SW of the earlier collapse scarp. Pyroclastic flows and lahars accompanying growth and collapse of the steep-sided active summit lava dome have devastated cultivated lands on the western-to-southern flanks and caused many fatalities during historical time.

Pacaya, Guatemala

14.382°N, 90.601°W, Summit elev. 2569 m

INSIVUMEH reported that during 11-15 October Strombolian explosions at Pacaya’s Mackenney Crater ejected material as high as 25 m above the crater rim, and gas plumes rose 200-700 m. A lava flow that first emerged on 11 October traveled NW towards Cerro Chino, and by 15 October was 250 m long.

Geological summary: Eruptions from Pacaya, one of Guatemala’s most active volcanoes, are frequently visible from Guatemala City, the nation’s capital. This complex basaltic volcano was constructed just outside the southern topographic rim of the 14 x 16 km Pleistocene Amatitlán caldera. A cluster of dacitic lava domes occupies the southern caldera floor. The post-caldera Pacaya massif includes the ancestral Pacaya Viejo and Cerro Grande stratovolcanoes and the currently active Mackenney stratovolcano. Collapse of Pacaya Viejo between 600 and 1500 years ago produced a debris-avalanche deposit that extends 25 km onto the Pacific coastal plain and left an arcuate somma rim inside which the modern Pacaya volcano (Mackenney cone) grew. A subsidiary crater, Cerro Chino, was constructed on the NW somma rim and was last active in the 19th century. During the past several decades, activity has consisted of frequent strombolian eruptions with intermittent lava flow extrusion that has partially filled in the caldera moat and armored the flanks of Mackenney cone, punctuated by occasional larger explosive eruptions that partially destroy the summit of the growing young stratovolcano.

Sabancaya, Peru

15.787°S, 71.857°W, Summit elev. 5960 m

Observatorio Vulcanológico del Sur del IGP (OVS-IGP) and Observatorio Vulcanológico del INGEMMET (OVI) reported that explosions at Sabancaya averaged 17 per day during 8-14 October. Hybrid earthquakes were infrequent and of low magnitude. Gas-and-ash plumes rose as high as 2.5 km above the crater rim and drifted 30 km NE, E, SE, and SW. The MIROVA system detected six thermal anomalies, and on 14 October the sulfur dioxide gas flux was high at 3,132 tons per day. The report noted that the public should not approach the crater within a 12-km radius.

Geological summary: Sabancaya, located in the saddle NE of Ampato and SE of Hualca Hualca volcanoes, is the youngest of these volcanic centers and the only one to have erupted in historical time. The oldest of the three, Nevado Hualca Hualca, is of probable late-Pliocene to early Pleistocene age. The name Sabancaya (meaning “tongue of fire” in the Quechua language) first appeared in records in 1595 CE, suggesting activity prior to that date. Holocene activity has consisted of Plinian eruptions followed by emission of voluminous andesitic and dacitic lava flows, which form an extensive apron around the volcano on all sides but the south. Records of historical eruptions date back to 1750.

Sheveluch, Central Kamchatka (Russia)

56.653°N, 161.36°E, Summit elev. 3283 m

KVERT reported that a thermal anomaly over Sheveluch was identified in satellite data during 8-10 October; weather clouds prevented views on the other days during 5-12 October. The Aviation Color Code remained at Orange (the second highest level on a four-color scale).

Geological summary: The high, isolated massif of Sheveluch volcano (also spelled Shiveluch) rises above the lowlands NNE of the Kliuchevskaya volcano group. The 1300 km3 volcano is one of Kamchatka’s largest and most active volcanic structures. The summit of roughly 65,000-year-old Stary Shiveluch is truncated by a broad 9-km-wide late-Pleistocene caldera breached to the south. Many lava domes dot its outer flanks. The Molodoy Shiveluch lava dome complex was constructed during the Holocene within the large horseshoe-shaped caldera; Holocene lava dome extrusion also took place on the flanks of Stary Shiveluch. At least 60 large eruptions have occurred during the Holocene, making it the most vigorous andesitic volcano of the Kuril-Kamchatka arc. Widespread tephra layers from these eruptions have provided valuable time markers for dating volcanic events in Kamchatka. Frequent collapses of dome complexes, most recently in 1964, have produced debris avalanches whose deposits cover much of the floor of the breached caldera.

Turrialba, Costa Rica

10.025°N, 83.767°W, Summit elev. 3340 m

OVSICORI-UNA reported that most days during 10-16 October intermittent, passive gas-and-ash emissions at Turrialba rose as high as 1 km above the crater rim. The emissions drifted W, SW, S, and NE. There were also some explosive events; an energetic explosion was recorded at 1712 on 14 October, though cloudy weather prevented estimates of a plume height.

Geological summary: Turrialba, the easternmost of Costa Rica’s Holocene volcanoes, is a large vegetated basaltic-to-dacitic stratovolcano located across a broad saddle NE of Irazú volcano overlooking the city of Cartago. The massive edifice covers an area of 500 km2. Three well-defined craters occur at the upper SW end of a broad 800 x 2200 m summit depression that is breached to the NE. Most activity originated from the summit vent complex, but two pyroclastic cones are located on the SW flank. Five major explosive eruptions have occurred during the past 3500 years. A series of explosive eruptions during the 19th century were sometimes accompanied by pyroclastic flows. Fumarolic activity continues at the central and SW summit craters.

Veniaminof, United States

56.17°N, 159.38°W, Summit elev. 2507 m

AVO reported that the eruption at Veniaminof continued during 10-16 October, as evidenced by elevated surface temperatures in satellite data, and low-level continuous tremor. Satellite data indicated that the E part of the S-flank flow field remained active. The Aviation Color Code remained at Orange and the Volcano Alert Level remained at Watch.

Geological summary: Massive Veniaminof volcano, one of the highest and largest volcanoes on the Alaska Peninsula, is truncated by a steep-walled, 8 x 11 km, glacier-filled caldera that formed around 3700 years ago. The caldera rim is up to 520 m high on the north, is deeply notched on the west by Cone Glacier, and is covered by an ice sheet on the south. Post-caldera vents are located along a NW-SE zone bisecting the caldera that extends 55 km from near the Bering Sea coast, across the caldera, and down the Pacific flank. Historical eruptions probably all originated from the westernmost and most prominent of two intra-caldera cones, which rises about 300 m above the surrounding icefield. The other cone is larger, and has a summit crater or caldera that may reach 2.5 km in diameter, but is more subdued and barely rises above the glacier surface.

Source: GVP

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s